Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica.

نویسندگان

  • Julianne H Grose
  • Ulfar Bergthorsson
  • Yaping Xu
  • Jared Sterneckert
  • Behzad Khodaverdian
  • John R Roth
چکیده

Salmonella enterica can obtain pyridine from exogenous nicotinamide mononucleotide (NMN) by three routes. In route 1, nicotinamide is removed from NMN in the periplasm and enters the cell as the free base. In route 2, described here, phosphate is removed from NMN in the periplasm by acid phosphatase (AphA), and the produced nicotinamide ribonucleoside (NmR) enters the cell via the PnuC transporter. Internal NmR is then converted back to NMN by the NmR kinase activity of NadR. Route 3 is seen only in pnuC* transporter mutants, which import NMN intact and can therefore grow on lower levels of NMN. Internal NMN produced by either route 2 or route 3 is deamidated to nicotinic acid mononucleotide and converted to NAD by the biosynthetic enzymes NadD and NadE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salmonella typhimurium mutants lacking NAD pyrophosphatase.

NAD can serve as both a purine and a pyridine source for Salmonella typhimurium. Exogenous NAD is rapidly broken down into nicotinamide mononucleotide and AMP by an NAD pyrophosphatase, the first step in the pathway for the assimilation of exogenous NAD. We isolated and characterized mutants of S. typhimurium lacking NAD pyrophosphatase activity; such mutants were identified by their failure to...

متن کامل

Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica.

The three activities of NadR were demonstrated in purified protein and assigned to separate domains by missense mutations. The N-terminal domain represses transcription of genes for NAD synthesis and salvage. The C-terminal domain has nicotinamide ribose kinase (NmR-K; EC 2.7.1.22) activity, which is essential for assimilation of NmR, converting it internally to nicotinamide mononucleotide (NMN...

متن کامل

Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica

Acid pH often triggers changes in gene expression. However, little is known about the identity of the gene products that sense fluctuations in extracytoplasmic pH. The Gram-negative pathogen Salmonella enterica serovar Typhimurium experiences a number of acidic environments both inside and outside animal hosts. Growth in mild acid (pH 5.8) promotes transcription of genes activated by the respon...

متن کامل

Biochemical characterization of the class B acid phosphatase (AphA) of Escherichia coli MG1655.

The AphA enzyme of Escherichia coli, a molecular class B periplasmic phosphatase that belongs to the DDDD superfamily of phosphohydrolases, was purified and subjected to biochemical characterization. Kinetic analysis with several substrates revealed that the enzyme essentially behaves as a broad-spectrum nucleotidase highly active on 3'- and 5'-mononucleotides and monodeoxynucleotides, but not ...

متن کامل

Increased bile resistance in Salmonella enterica mutants lacking Prc periplasmic protease.

Prc is a periplasmic protease involved in processing of penicillin-binding protein 3 (PBP3). Lack of Prc suppresses bile sensitivity in Dam-, Wec-, PhoP-, DamX-, and SeqA- mutants of Salmonella enterica, and increases bile resistance in the wild type. Changes in the activity of penicillin binding proteins PBP3, PBP4, PBP5/6 and PBP7 are detected in a Prc- background, suggesting that peptidoglyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 13  شماره 

صفحات  -

تاریخ انتشار 2005